Example bootstrap results for the full Moby Dick data set
Source:R/data_help_files.R
bootstrap_moby.Rd
To explore the uncertainty in the model fit, this package provides a
bootstrap
function.
- bootstrap_moby
The output from running 5000 bootstraps on the full Moby Dick data set (for a discrete power law) using the
bootstrap
function.- bootstrap_p_moby
The output from running 5000 bootstraps on the full Moby Dick data set (for a discrete power law) using the
bootstrap_p
function.
The bootstrap_moby
values correspond to the first row of
table 6.1 in the Clauset et al paper:
bootstrap_moby$gof
the K-S statistic
bootstrap_moby$bootstraps
a data frame for the optimal values from the bootstrapping procedure. Column 1: K-S, Column 2: xmin, Column 3: alpha. So standard deviation of column 2 and 3 is 2.2 and 0.033 (the paper gives 2 and 0.02 respectively).
The bootstrap_p_moby
gives the p-value for the hypothesis
test of whether the data follows a power-law. For this simulation study,
we get a value of 0.43 (the paper gives 0.49).
Source
M. E. J. Newman, "Power laws, Pareto distributions and Zipf's law." Contemporary Physics 46, 323 (2005).
Examples
## Generate the bootstrap_moby data set
if (FALSE) { # \dontrun{
data(moby)
m = displ$new(moby)
bs = bootstrap(m, no_of_sims=5000, threads=4, seed=1)
} # }
#' ## Generate the bootstrap_p_moby data set
if (FALSE) { # \dontrun{
bs_p = bootstrap_p(m, no_of_sims=5000, threads=4, seed=1)
} # }